Abstract

A variety of fungal melanins with natural 15N abundance are characterized by solid-state 13C and 15N NMR spectroscopy and are compared to solid-state 13C and 15N NMR spectra of organic matter from representative soils. In all solid-state 15N NMR spectra the peptide/amide region (−220 to −285 ppm) dominates with more than 70% of the total intensity. The region between −285 and −375 ppm, assigned to amino and ammonium groups, always contains more than half of the remaining intensity. The area in the region from −30 to −220 ppm, where aromatic heterocycles would show signals, makes up less than 10% of the total intensity. These findings call into question common structural models for melanins. The solid-state 13C NMR spectra, on the other hand, reveal large differences when the melanins are compared to each other, and to composts and soils. The concentration of the aromatic carbon varies from 5 to 40% in the melanin series. The ratio C aro N tot and C ali N tot were calculated, and confirm that nitrogen in these samples is bound in C a-groups rather than in aromatic heterocyclic structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.