Abstract
The purpose of this study was to demonstrate the utility of combining Raman spectroscopy with machine learning techniques for achieving origin traceability of five garlic bulb species. We collected Raman spectra of garlic bulbs and Raman bands are assigned. After pre-processing, the wavenumbers and intensities of distinct Raman peaks are extracted as the input data for developing the classification model. Our trained model presents an accuracy of 98.97%, a precision of 98.92% and a sensitivity of 98.86%. The results indicate that the artificial prior feature extraction strategy prevents over-fitting due to external variables and improves greatly model accuracy. This study offers a novel classification and origin identification scheme for plant bulbs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.