Abstract

The presence of acrylamide (ACR) in food results in evident cognitive decline, accumulation of misfolded proteins, neurotoxicity, neuroinflammation, and neuronal apoptosis leading to progressive neurodegeneration. Here, we used 4 dpf zebrafish larvae exposed to ACR (1mM/3days) as our model, and neuronal proteins were analyzed. Next, we tested the effect of garcinol (GAR), a natural histone-acetylation inhibitor, whose neuroprotection mechanism of action remains to be fully elucidated. Our result revealed that ACR exposure significantly impaired cognitive behavior, downregulated oxidative repair machinery, and enhanced microglia-induced neuronal apoptosis. Moreover, ACR mediated cathepsin-B (CAT-B) translocation acted as the intracellular secretase for the processing of amyloid precursor protein (APP) and served as an additional risk factor for tau hyper-phosphorylation. Here, GAR suppresses ACR mediated CATB translocation as similar with standard inhibitor CA-074. And, this pharmacological repression helped in inhibiting amyloidogenic APP processing and downstream tau hyper-phosphorylation. GAR neuroprotection was accompanied by CREB, ATF1, and BDNF activation promoting neuronal survival. At the same time, GAR subdued cdk5 and GSK3β, the link between APP processing and tau hyper-phosphorylation. Taken together, our findings indicate that GAR rescued from ACR mediated behavioral defects, oxidative injury, neuroinflammation, undesirable APP processing, tau hyper-phosphorylation which in turn found to be CATB dependent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call