Abstract

Following transcription, genomic information begins a long journey toward translation of its nucleotide sequence into the amino acids of a protein. In eukaryotes, synthesized pre-mRNAs become processed to mature mRNAs by 5'-end capping, splicing, 3'-end cleavage and polyadenylation in the nucleus, before being scrutinized for premature stop codons. Each step requires high precision and control to ensure that an intact and readable message is exported to the cytoplasm before finally becoming translated. Two important aspects of these processes are accurately managed by ribonucleoprotein machineries-the spliceosome and the ribosome. Recently, several natural products targeting these macromolecular assemblies have been reported. For the first time in eukaryotes, these molecules allow chemical disruption and dissection of the sophisticated machinery that regulates post-transcriptional events. Beyond their great potential as bioprobes for investigating mRNA regulation and protein synthesis, these compounds also show promise in opening new therapeutic approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.