Abstract

Abstract In gas turbine process, the axial compressor is subjected to aerodynamic instabilities because of rotating stall and surge associated with bifurcation nonlinear behaviour. This paper presents a Genetic Algorithm and Particle Swarm Optimization (GA/PSO) of robust sliding mode controller in order to deal with this transaction between compressor characteristics, uncertainties and bifurcation behaviour. Firstly, robust theory based equivalent sliding mode control is developed via linear matrix inequality approach to achieve a robust sliding surface, then the GA/PSO optimization is introduced to find the optimal switching controller parameters with the aim of driving the variable speed axial compressor (VSAC) to the optimal operating point with minimum control effort. Since the impossibility of finding the model uncertainties and system characteristics, the adaptive design widely considered to be the most used strategy to deal with these problems. Simulation tests were conducted to confirm the effectiveness of the proposed controllers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.