Abstract

We present effective upper bounds on the symmetric bilinear complexity of multiplication in extensions of a base finite field $$\mathbb {F}_{p^2}$$ of prime square order, obtained by combining estimates on gaps between prime numbers together with an optimal construction of auxiliary divisors for multiplication algorithms by evaluation-interpolation on curves. Most of this material dates back to a 2011 unpublished work of the author, but it still provides the best results on this topic at the present time. Then a few updates are given in order to take recent developments into account, including comparison with a similar work of Ballet and Zykin, generalization to classical bilinear complexity over $$\mathbb {F}_p$$ , and to short multiplication of polynomials, as well as a discussion of open questions on gaps between prime numbers or more generally values of certain arithmetic functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.