Abstract
The Kondo insulator state (KIS) realized in the symmetric Anderson model at half filling is studied in the framework of a mean field approach. It is shown that the state of the Kondo insulator is realized in a lattice with a double cell and a gapped electron liquid behaves like a gapless Majorana spin liquid. The local moments of d-electrons form a static Z_2-field in which band electrons move. The gap value in the quasi-particle excitations spectrum decreases with increasing an external magnetic field and closes at its critical value. The behavior of an electron liquid is studied for an arbitrary dimension of the model. The proposed approach leads to the description of KIS without the need to resort to artificial symmetry breaking to alternative understanding of the physical nature of this phase state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.