Abstract
We study gaps in the spectra of the adjacency matrices of large finite cubic graphs. It is known that the gap intervals ( 2 2 , 3 ) (2 \sqrt {2},3) and [ − 3 , − 2 ) [-3,-2) achieved in cubic Ramanujan graphs and line graphs are maximal. We give constraints on spectra in [ − 3 , 3 ] [-3,3] which are maximally gapped and construct examples which achieve these bounds. These graphs yield new instances of maximally gapped intervals. We also show that every point in [ − 3 , 3 ) [-3,3) can be gapped by planar cubic graphs. Our results show that the study of spectra of cubic, and even planar cubic, graphs is subtle and very rich.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications of the American Mathematical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.