Abstract

This paper is concerned with the identification of important nodes in node-weighted graphs by applying matrix functions, in particular the matrix exponential. Many tools that use an adjacency matrix for a graph have been developed to study the importance of the nodes in unweighted or edge-weighted networks. However, adjacency matrices for node-weighted graphs have not received much attention. The present paper proposes using a line graph associated with a node-weighted graph to construct an edge-weighted graph that can be analyzed with available methods. Both undirected and directed graphs with positive node weights are considered. We show that when the weight of a node increases, the importance of this node in the graph increases as well, provided that the adjacency matrix is suitably scaled. Applications to real-life problems are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.