Abstract

Astrocytic gap junctions have been implicated in the regulation of cell viability. High amounts of extracellular zinc, which is released during ischemia, seizure, and brain trauma, can be cytotoxic to astrocytes. We tested whether gap junction coupling between astrocytes plays an important role in modulating zinc toxicity in hippocampal astrocytes. Zinc induces cell death in a dose-dependent manner in primary cultured hippocampal astrocytes. Two gap junction inhibitors, 18β-glycyrrhetinic acid and arachidonic acid, had no effect on zinc-induced cell death in low-confluence culture, where physical separation prevents gap junctions from forming. However, these inhibitors can potentiate zinc toxicity in high-confluence astrocyte cultures. Zinc toxicity was substantially suppressed upon connexin 43 overexpression, whereas knockdown caused a significant enhancement of the toxicity in high-confluence cultures. These data suggest that gap junctions in hippocampal astrocytes provide a protective role against zinc toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.