Abstract

Increasing evidence has implicated astrocyte pathology in the etiopathology of major depressive disorder (MDD). In particular, dysfunction of gap junctions in astrocytes is a potential target for MDD treatment. However, the mechanism underlying stress-induced dysfunction of gap junctions is still unknown. We therefore studied the mechanism of stress-induced dysfunction of gap junctions in prefrontal cortical and hippocampal astrocytes. Corticosterone (CORT) was used to induce stress conditions; CORT damaged the function of gap junctions, which resulted from less distribution of connexin43 (Cx43) on membranes and the enhanced phosphorylation of Cx43 at S368. Moreover, CORT downregulated the biosynthesis of Cx43 but increased the degradation of Cx43. Interestingly, both autophagy and the proteasome system were involved in the degradation of Cx43 in prefrontal cortical astrocytes, but only the proteasome system was involved in the degradation of Cx43 in hippocampal astrocytes. CORT significantly induced the formation of annular gap junction vesicles in prefrontal cortical astrocytes; however, Cx43 mainly presented as small dots in the hippocampal astrocytes. Furthermore, CORT increased N-Cadherin expression and the interactions of Cx43 with ZO-1/drebrin in prefrontal cortical astrocytes, but these interactions were oppositely modulated in hippocampal astrocytes. In conclusion, this study clarified the alternations of the Cx43 life cycle in the prefrontal cortical and hippocampal astrocytes exposed to CORT, which may contribute to our understanding of the mechanisms underlying stress-induced dysfunction of gap junctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.