Abstract
In the current study, arrhythmogenic effects of the gap junction inhibitor heptanol (0.05 mM) were examined in Langendorff-perfused mouse hearts. Monophasic action potential recordings were obtained from the left ventricular epicardium during right ventricular pacing. Regular activity was observed both prior and subsequent to application of heptanol in all of the 12 hearts studied during 8 Hz pacing. By contrast, induced ventricular tachycardia (VT) was observed after heptanol treatment in 6/12 hearts using a S1S2 protocol (Fisher's exact test; P<0.05). The arrhythmogenic effects of heptanol were associated with increased activation latencies from 13.2±0.6 to 19.4±1.3 msec (analysis of variance; P<0.001) and reduced conduction velocities (CVs) from 0.23±0.01 to 0.16±0.01 msec (analysis of variance; P<0.001) in an absence of alterations in action potential durations (ADPs) at x=90% (38.0±1.0 vs. 38.3±1.8 msec), 70% (16.8±1.0 vs. 19.5±0.9 msec), 50% (9.2±0.8 vs. 10.1±0.6 msec) or 30% (4.8±0.5 vs. 6.3±0.6 msec) repolarization (APDx) or in effective refractory period (ERPs) (39.6±1.9 vs. 40.6±3.0 msec) (all P>0.05). Consequently, excitation wavelengths (λ; CV × ERP) were reduced from 9.1±0.6 to 6.5±0.6 mm (P<0.01), however critical intervals for re-excitation (APD90- ERP) were unaltered (−1.1±2.4 vs. −2.3±1.8 msec; P>0.05). Together, these observations demonstrate for the first time, to the best of our knowledge, that inhibition of gap junctions alone using a low heptanol concentration (0.05 mM) was able to reduce CV, which alone was sufficient to permit the induction of VT using premature stimulation by reducing λ, which therefore appears central in the determination of arrhythmic tendency.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have