Abstract

In this paper we study k-equivariant wave maps from the hyperbolic plane into the 2-sphere as well as the energy critical equivariant SU(2) Yang–Mills problem on 4-dimensional hyperbolic space. The latter problem bears many similarities to a 2-equivariant wave map into a surface of revolution. As in the case of 1-equivariant wave maps considered in [9], both problems admit a family of stationary solutions indexed by a parameter that determines how far the image of the map wraps around the target manifold. Here we show that if the image of a stationary solution is contained in a geodesically convex subset of the target, then it is asymptotically stable in the energy space. However, for a stationary solution that covers a large enough portion of the target, we prove that the Schrödinger operator obtained by linearizing about such a harmonic map admits a simple positive eigenvalue in the spectral gap. As there is no a priori nonlinear obstruction to asymptotic stability, this gives evidence for the existence of metastable states (i.e., solutions with anomalously slow decay rates) in these simple geometric models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.