Abstract

In this paper we continue the analysis of equivariant wave maps from 2-dimensional hyperbolic space into surfaces of revolution that was initiated in [13, 14]. When the target is the hyperbolic plane we proved in [13] the existence and asymptotic stability of a 1-parameter family of finite energy harmonic maps indexed by how far each map wraps around the target. Here we conjecture that each of these harmonic maps is globally asymptotically stable, meaning that the evolution of any arbitrarily large finite energy perturbation of a harmonic map asymptotically resolves into the harmonic map itself plus free radiation. Since such initial data exhaust the energy space, this is the soliton resolution conjecture for this equation. The main result is a verification of this conjecture for a nonperturbative subset of the harmonic maps

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call