Abstract
Abstract We investigated the gantry-angle classifier performance with a fluence map using three machine-learning algorithms, and compared it with human performance. Eighty prostate cases were investigated using a seven-field-intensity modulated radiotherapy treatment (IMRT) plan with beam angles of 0°, 50°, 100°, 155°, 205°, 260°, and 310°. The k-nearest neighbor (k-NN), logistic regression (LR), and support vector machine (SVM) algorithms were used. In the observer test, three radiotherapists assessed the gantry angle classification in a blind manner. The precision and recall rates were calculated for the machine learning and observer test. The average precision rate of the k-NN and LR algorithms were 94.8% and 97.9%, respectively. The average recall rate of the k-NN and LR algorithms were 94.3% and 97.9%, respectively. The SVM had 100% precision and recall rates. The gantry angles of 0°, 155°, and 205° had an accuracy of 100% in all algorithms. In the observer test, average precision and recall rates were 82.6% and 82.6%, respectively. All observers could easily classify the gantry angles of 0°, 155°, and 205° with a high degree of accuracy. Misclassifications occurred in gantry angles of 50°, 100°, 260°, and 310°. Machine learning could better classify gantry angles for prostate IMRT than human beings. In particular, the SVM algorithm had a perfect classification of 100%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.