Abstract

We demonstrate GaN-based thin light-emitting diodes (LEDs) on flexible polymer and paper substrates covered with chemical vapor deposited graphene as a transparent-conductive layer. Thin LEDs were fabricated by lifting the sapphire substrate off by Excimer laser heating, followed by transfer of the LEDs to the flexible substrates. These substrates were coated with tri-layer graphene by a wet transfer method. Optical and electrical properties of thin laser lift-offed LEDs on the flexible substrates were characterized under both relaxed and strained conditions. The graphene on paper substrates remained conducting when the graphene/paper structure was folded. The high transmittance, low sheet resistance and high failure strain of the graphene make it an ideal candidate as the transparent and conductive layer in flexible optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.