Abstract

Power semiconductor devices based on silicon (Si) are quickly approaching their limits, set by fundamental material properties. In order to address these limitations, new materials for use in devices must be investigated. Wide bandgap materials, such as silicon carbide (SiC) and gallium nitride (GaN) have suitable properties for power electronic applications; however, fabrication of practical devices from these materials may be challenging. SiC technology has matured to point of commercialized devices, whereas GaN requires further research to realize full material potential. This review covers fundamental material properties of GaN as they relate to Si and SiC. This is followed by a discussion of the contemporary issues involved with bulk GaN substrates and their fabrication and a brief overview of how devices are fabricated, both on native GaN substrate material and non-native substrate material. An overview of current device structures, which are being analyzed for use in power switching applications, is then provided; both vertical and lateral device structures are considered. Finally, a brief discussion of prototypes currently employing GaN devices is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.