Abstract

We studied microscopic chemistry of gaseous phase in GaN growth by computational thermodynamic analysis of metalorganic vapor phase epitaxy with two- and three-flow methods. Correlations between quality of GaN layers and gaseous phase chemistry were found from the computational analysis. It was confirmed that laminar flow on a substrate during growth was necessary to obtain a high-quality GaN layer in spite of high growth temperature. Optimum decomposed-species V/III ratio (NH 2/GaCH 3) were considered in the range of 1000−2000 to achieve high electron mobility more than 200 cm 2/V s. Two-flow method was easier to achieve the optimum condition than three-flow method both in experiments and in computational analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.