Abstract

The current study shows computational and experimental analysis of multiphase flows (gas-liquid two-phase flow) in channels with sudden area change. Four test sections used for sudden contraction and expansion of area in experiments and computational analysis. These are 0.5–0.375, 0.5–0.315, 0.5–0.19, 0.5–0.14, inversely true for expansion channels. Liquid Flow rates ranging from 0.005 kg/s to 0.03 kg/s employed, while gas flow rates ranging from 0.00049 kg/s to 0.029 kg/s implemented. First, single-phase flow consists of only water, and second two-phase Nitrogen-Water mixture flow analyzed experimentally and computationally. For Single-phase flow, two mathematical models used for comparison: the two transport equations k-epsilon turbulence model (K-Epsilon), and the five transport equations Reynolds stress turbulence interaction model (RSM). A Eulerian-Eulerian multiphase approach and the RSM mathematical model developed for two-phase gas-liquid flows based on current experimental data. As area changes, the pressure drop observed, which is directly proportional to the Reynolds number. The computational analysis can show precise prediction and a good agreement with experimental data when area ratio and pressure differences are smaller for laminar and turbulent flows in circular geometries. During two-phase flows, the pressure drop generated shows reasonable dependence on void fraction parameter, regardless of numerical analysis and experimental analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.