Abstract
The development of processes for epitaxial growth of vertical gallium nitride (GaN) drift layers enabling 1.2 kV breakdown voltage on low‐cost sapphire substrates is presented in comparison to GaN bulk substrates. The targeted blocking capability demands drift layers with a thickness of 10 μm and low but controllable n‐type doping. Using a growth rate of 2.5 μm h−1 the concentration of unintentionally incorporated carbon is sufficiently low to adjust the n‐type carrier concentration to ≈1 × 1016 cm−3 for all types of substrates. To assess GaN drift region properties in terms of forward bias conductivity and reverse bias blocking strength, a quasi‐vertical p‐n‐diode structure is utilized. Bow reduction of GaN‐on‐sapphire structures is achieved using a stealth laser scribing process. Breakdown voltages higher than 1600 V and a specific on‐state resistance as low as 0.7 mΩ cm2 are obtained with diodes fabricated on GaN substrates. Similar structures grown on sapphire show breakdown voltages of about 1300 V due to higher levels of current leakage. Comparing different types of substrates, a direct correlation between dislocation density in the drift layer with the leakage current in p‐n diodes is deduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: physica status solidi (RRL) – Rapid Research Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.