Abstract

AbstractWe have demonstrated deep green InGaN/GaN light emitting diodes (LEDs) on 100 nm thick (111)‐oriented silicon‐on‐insulator (SOI) substrate. The LED structures are grown by metalorganic chemical vapour deposition. High‐resolution X‐ray diffraction and transmission electron microscopy have been used to characterize the structural quality of the LED layers. The room temperature electroluminescence (EL) spectrum from these LEDs is dominated by multiple interference peaks associated with the reflectivity changes at the bottom Si/SiO2 interfaces beneath AlN buffer. The spectral intensity of the LEDs in the deep green region is higher due to the larger substrate reflectance at longer wavelengths. A greater modulation in the spectral fringes in the longer wavelength regions is due to the presence of Fabry‐Perot modes. Such InGaN/GaN light emitting structures on reflective SOI may be useful for the realization of phosphor‐free white LEDs. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.