Abstract

Nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants (SNRs) is used to investigate the properties of Kepler’s SNR and, in particular, to predict the γ-eay spectrum expected from this SNR. Observations of the nonthermal radio and X-ray emission spectra as well as theoretical constraints for the total supernova (SN) explosion energy E sn are used to constrain the astronomical and particle acceleration parameters of the system. Under the assumption that Kepler’s SN is a type Ia SN we determine for any given explosion energy E sn and source distance d the mass density of the ambient interstellar medium (ISM) from a fit to the observed SNR size and expansion speed. This makes it possible to make predictions for the expected γ-eay flux. Exploring the expected distance range we find that for a typical explosion energy E sn=1051 erg the expected energy flux of TeV γ-rays varies from 2×10−11 to 10−13 erg/(cm2 s) when the distance changes from d=3.4 kpc to 7 kpc. In all cases the γ-eay emission is dominated by π 0-decay γ-rays due to nuclear CRs. Therefore Kepler’s SNR represents a very promising target for instruments like H.E.S.S., CANGAROO and GLAST. A non-detection of γ-rays would mean that the actual source distance is larger than 7 kpc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call