Abstract

The lateral hypothalamus plays an important role in homeostasis. It is sensitive to negative energy balance and believed to interact with other brain regions to mediate food seeking behavior. However, no neural signaling of hunger in the lateral hypothalamus has been studied. Male Swiss albino mice implanted with intracranial electrodes into the lateral hypothalamus and the hippocampus were randomly treated with drinking water for control condition, 18-20 h deprivation of food for hunger condition, and fluid food for satiety condition. Therefore, local field potential (LFP) and locomotor activity of animals were simultaneously recorded. One way ANOVA with Tukey's post hoc test was used for statistical analysis. Frequency analysis of LFP revealed that food deprivation significantly increased the power of gamma oscillation (65-95 Hz) in the lateral hypothalamus and the hippocampus. However, satiety did not change the oscillation in these regions. Moreover, no significant difference among groups was observed for locomotor count and speed. The analysis of coherence values between neural signaling of these two brain areas also confirmed significant increase within a frequency range of 61-92 Hz for hunger. No change in coherence value was induced by satiety. In summary, this study demonstrated neural signaling of the lateral hypothalamus in response to hunger with differential power spectrum of LFP and the interplay with the hippocampus. The data may suggest critical roles of the lateral hypothalamus in detection of negative energy balance and coordination of other higher functions for food related learning or behaviors through the connectivity with the hippocampus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.