Abstract

We designed and fabricated a hard X-ray and gamma-ray TES spectrometer for nuclear materials analysis. The superconducting tin absorber is coupled to an Ir/Au TES by using a gold post to improve the thermal contact between the absorber and the TES. The reported energy resolution is 156 eV FWHM at 59.5 keV and 166 eV FWHM at 122 keV gamma-rays. We performed measurement of a Pu sample and clearly separated the \(^{239}\)Pu (56.828 keV) and the \(^{241}\)Am (59.5 keV) peaks by this TES microcalorimeter which cannot be resolved by the HPGe detector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.