Abstract

A series of polyampholyte nanocomposite biopolymers, poly(N,N-diallyldimethylammonium chloride-co-acrylamide) grafted on carboxymethylcellulose/iron(III) oxide [P(DADMAC-AAm)CMC/Fe2O3] and poly(N,N-diallyldimethylammonium chloride-co‐sodium acrylate) grafted on carboxymethylcellulose/iron(III) oxide [P(DADMAC-SA)CMC/Fe2O3], was prepared with different molar ratios of anionic groups to cationic groups using gamma irradiation. The grafting properties and swelling behavior were investigated as a function of grafting conditions such as DADMAC, AAm, SA, and CMC concentrations and absorbed dose. Fourier transform infrared spectroscopic analysis (FTIR) confirmed the graft copolymerization. Scanning electron microscope (SEM) was employed to check the morphological structure of CMC, P(DADMAC-AAm)CMC/Fe2O3, and P(DADMAC-SA)CMC/Fe2O3. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) further characterized the grafted copolymers and showed their high thermal stability. Using batch sorption experiments and 60Co as a radiotracer, P(DADMAC-AAm)CMC/Fe2O3 and P(DADMAC-SA)CMC/Fe2O3 were evaluated for Co(II) removal from aqueous solutions. Experimentally, P(DADMAC-AAm)CMC/Fe2O3 and P(DADMAC-SA)CMC/Fe2O3 show high sorption capacity of Co(II), i.e. 69.67 mg g−1 and 75.17 mg g−1, respectively, which makes them potential sorbents for Co(II) removal from water/wastewater. Finally, the Co(II) sorption was examined using sorption isotherm and kinetic models. Cobalt sorption was best fitted to Langmuir model which suggests the sorption is of chemisorption type. On the other hand, the sorption kinetics was best represented by the pseudo-first-order kinetic model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call