Abstract

A novel brush-like poly(2-aminoethyl methacrylate) (PAEMA) was grafted onto chitosan (CS) through gamma radiation-induced polymerization. The copolymer (CS-g-PAEMA) was used to prepare a sodium acetate leached poly(urethane-urea) scaffold. The above derivatives were developed, synthesized, and characterized to meet the specific characteristics of biomaterials. The results revealed that this method is an easy and successful route for grafting PAEMA onto CS. The feasibility of preparing a CS-g-PAEMA polyurethane foam was confirmed by mechanical, morphometric, spectroscopic, and cytotoxic studies. The scaffold showed high biocompatibility both in vitro and in vivo. The first experiment proved that CS-based polyurethane efficiently allows the dynamic culturing of human fibroblast cells. Additionally, an in vivo study in a murine model indicated a complete integration of the scaffold to surrounding subcutaneous tissue as supported by the histological and histochemical assessments. The aforementioned results support the use of CS-g-PAEMA poly(saccharide-urethane) as a model of in vitro-engineered skin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.