Abstract

Ag/rGO composites were synthesized under gamma irradiation using silver nitrate and graphene oxide (GO) as the starting materials. Comparing with traditional methods, gamma irradiation is a simple and “green” technique. In the irradiation system, silver ions were reduced to silver nanoparticles (AgNPs) by the electrons generated from the radiolysis of solvent. GO nanosheets provided reactive sites for the formation of AgNPs and acted as a colloidal surfactant preventing the aggregation of AgNPs. Meanwhile, GO were partially reduced to reduced graphene oxide (rGO). X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, Raman spectra and UV-Vis absorption spectra were applied for the characterization of Ag/rGO composites. The results showed that the absorbed dose (3.1 kGy, 4.7 kGy, 9.4 kGy and 27.4 kGy) plays an important role in the size distribution of AgNPs and the reduction degree of GO nanosheetes. The Ag/rGO composites exhibit a broad absorption band at visible light due to the surface plasmon resonance of AgNPs. Because of the unique surface properties, Ag/rGO composites behave enhanced performance for the adsorption of organic dye from water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call