Abstract

We recently identified a gamma-interferon-inducible lysosomal thiol reductase (GILT), constitutively expressed in antigen-presenting cells, that catalyzes disulfide bond reduction both in vitro and in vivo and is optimally active at acidic pH. GILT is synthesized as a 35-kDa precursor, and following delivery to major histocompatibility complex (MHC) class II-containing compartments (MIICs), is processed to the mature 30-kDa form via cleavage of N- and C-terminal propeptides. The generation of MHC class II epitopes requires both protein denaturation and reduction of intra- and inter-chain disulfide bonds prior to proteolysis. GILT may be important in disulfide bond reduction of proteins delivered to MIICs and consequently in antigen processing. In this report we show that, like its mature form, precursor GILT reduces disulfide bonds with an acidic pH optimum, suggesting that it may also be involved in disulfide bond reduction in the endocytic pathway. We also show that processing of precursor GILT can be mediated by multiple lysosomal proteases and provide evidence that the mechanism of action of GILT resembles that of other thiol oxidoreductases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.