Abstract

Irradiation experiments were conducted on a thermally immature rock sample of the Phosphoria Retort Shale and its isolated kerogen. A 60Co-source for gamma radiation was employed at dosages ranging from 81 to 885 Mrads, which are attainable by Paleozoic and Precambrian black shales with syngenetic uranium enrichments. Kerogen elemental, isotopic, and pyrolysate compositions are not affected at these dosages, but the bitumens extracted from the irradiated rock are affected. The major effects are reductions in the amounts of bitumen, acyclic isoprenoids, and high-molecular weight acyclic carboxylic acids. Natural differences in the amounts of bitumen and acyclic isoprenoid due to regional and stratigraphie variations in organic source input and depositional conditions make the radiation-induced reductions in these parameters difficult to use as indicators of natural radiation damage in black shales. However, the preferential reduction in the high-molecular weight acyclic carboxylic acids, which are ubiquitous in the living precursory organic matter, is diagnostic of experimental γ-irradiation but may not be diagnostic of natural irradiation. The overall process associated with radiation damage is polymerization by cross-linking through a free radical mechanism. As a result, irradiation of organic matter in black shales is more likely to retard rather than enhance petroleum generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call