Abstract

In wireless communication, spectrum resources are utilized by authorities in particular fields. Most of the elements in spectrum are idle. Cognitive radio is a promising technique for allocating the idle spectrum into unlicensed users. Security shortage is a major challenging issue in cognitive radio ad-hoc networks (CRAHNs) that makes performance degradation on spectrum sensing and sharing. A selfish user pre-occupies the accessible bandwidth for their prospect usage and prohibits the progress secondary users whose makes the requirement for spectrum utility. Game theoretic model is proposed to detect the selfish attacker in CRAHNs. Channel state information (CSI) is considered to inform each user's channel handing information. The two strategy of Nash Equilibrium game model such as pure and mixed strategy for secondary users (SUs) and selfish secondary users (SSUs) are investigated and the selfish attacker is detected. Moreover a novel belief updating system is also proposed to the secondary users for knowing the CSI of the primary user. A simulation result shows that, game theoretic model is achieved to increase the detection rate of selfish attackers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call