Abstract

White mold (WM), caused by Sclerotinia sclerotiorum (Lib.) de Bary, is a widespread disease of dry and green bean (Phaseolus vulgaris L.) in North America. Gamete selection (GS) was effective to combine and pyramide resistant genes and quantitative trait loci (QTL) for common bacterial blight. Our objective was to determine the effectiveness of GS to introgress physiological resistance to white mold. Two inter-gene-pool double-cross populations were developed. Selection for WM resistance was practiced from F1 to F4. Thirteen selected F1:5 breeding lines of each population and their four parents were evaluated. Two separate inoculations were made on each plant 1 week apart using a cut-stem method. The WM reaction was scored at 16, 23, and 33 days post inoculation (DPI) using a scale from 1 (no disease) to 9 (severely diseased or dead). In F1, 52% of Pop I (USPT-WM-1/CORN 601//USPT-CBB-1/92BG-7) and 67% of Pop II (Chase/I9365-25//ABL 15/A 195) susceptible plants were discarded. In F4, only 1.2% of families from Pop I, and 0.9% for Pop II, survived the selection process. An average of 20.5% gain in WM resistance was obtained for both populations in F4. Four breeding lines of Pop I had significantly (P = 0.05) lower WM score (4.1–4.6) and four were equal (4.7–4.9) to the best WM-resistant parent 92BG-7 (4.9), while ten breeding lines of Pop II were equal (4.5–4.8) to the best WM-resistant parent A 195 (4.6). Thus, GS was effective for improving WM resistance in common bean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call