Abstract
In a smart community infrastructure that consists of multiple smart homes, smart controllers schedule various home appliances to balance energy consumption and reduce electricity bills of customers. In this paper, the impact of the smart home scheduling to the electricity market is analyzed with a new smart-home-aware bi-level market model. In this model, the customers schedule home appliances for bill reduction at the community level, whereas aggregators minimize the energy purchasing expense from utilities at the market level, both of which consider the smart home scheduling impacts. A game-theoretic algorithm is proposed to solve this formulation that handles the bidirectional influence between both levels. Comparing with the electricity market without smart home scheduling, our proposed infrastructure balances the energy load through reducing the peak-to-average ratio by up to 35.9%, whereas the average customer bill is reduced by up to 34.3%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.