Abstract

Bifurcation analysis of a structure constituted by two towers, linked by a viscous device at the tip and subjected to turbulent wind, is carried out. The towers have geometrical and mechanical parameters so that the steady part of the wind, whose contribution is evaluated in the framework of the steady theory, induces a 1:1 resonant double-Hopf bifurcation. The turbulent part of the wind, assumed as composed by two frequencies that are equal and double to the main frequency of the unlinked towers, respectively, induces parametric and external harmonic forces. These forces interact with the self-excitation due to the steady part of the wind, bringing imperfection in the bifurcation scenario. Transitions from resonant to non-resonant cases are analyzed in terms of behavior charts, and post-critical dynamics is studied in the space of bifurcation parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.