Abstract

Gallium (Ga) ions have been widely utilized for biomedical applications; however, their role in osteoblast regulation is not completely understood. The aim of the present study was to investigate the potential effect of Ga ions on osteoinduction in two osteoblast cell lines and to explore the underlying mechanisms. Human hFOB1.19 and mouse MC3T3-E1 osteoblasts were treated with Ga nitride (GaN) at different concentrations, and the degree of osteoinduction was assessed. Ga ion treatment was found to increase alkaline phosphatase activity and accelerate calcium nodule formation, as assessed using ALP activity assay and Alizarin red S staining. Moreover, upregulated expression levels of osteogenic proteins in osteoblasts were identified using western blotting and reverse transcription-quantitative PCR. Western blotting was also performed to demonstrate that the biological action of Ga ions was closely associated with the transient receptor potential melastatin 7/Akt signaling pathway. Furthermore, it was found that Ga ions did not cause osteoblast apoptosis, as indicated via flow cytometry, but promoted osteoclast proliferation, migration or invasion. The present study investigated the potential role of Ga ions in regulating osteoinduction of osteoblasts, thereby providing a promising strategy for the treatment of osteoporosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.