Abstract
A path decomposition of a graph G is a collection of edge-disjoint paths of G that covers the edge set of G. Gallai (1968) conjectured that every connected graph on n vertices admits a path decomposition of cardinality at most ⌊(n+1)∕2⌋. Gallai’s Conjecture has been verified for many classes of graphs. In particular, Lovász (1968) verified this conjecture for graphs with at most one vertex with even degree, and Pyber (1996) verified it for graphs in which every cycle contains a vertex with odd degree. Recently, Bonamy and Perrett (2016) verified Gallai’s Conjecture for graphs with maximum degree at most 5, and Botler et al. (2017) verified it for graphs with treewidth at most 3. In this paper, we verify Gallai’s Conjecture for triangle-free planar graphs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have