Abstract

The first two Galileo In-Orbit Validation satellites were launched in October 2011 and started continuous signal transmission on all frequencies in early 2012. Both satellites are equipped with two different types of clocks, namely rubidium clocks and hydrogen masers. Based on two test periods, the quality of the Galileo orbit determination based on Global Navigation Satellite System (GNSS) and Satellite Laser Ranging (SLR) observations is assessed. The estimated satellite clock parameters are used as quality indicator for the orbits: A bump at orbital periods in the Allan deviation indicates systematic errors in the GNSS-only orbit determination. These errors almost vanish if SLR observations are considered in addition. As the internal consistency is degraded by the combination, the offset of the SLR reflector is shifted by +5 cm, resulting in an improved orbit consistency as well as accuracy. Another approach to reduce the systematic errors of the GNSS-only orbit determination employs constraints for the clock estimates with respect to a linear model. In general, one decimeter orbit accuracy could be achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call