Abstract

Satellite Laser Ranging (SLR) observations to Global Navigation Satellite System (GNSS) satellites may be used for several purposes. On one hand, the range measurement may be used as an independent validation for satellite orbits derived solely from GNSS microwave observations. On the other hand, both observation types may be analyzed together to generate a combined orbit. The latter procedure implies that one common set of orbit parameters is estimated from GNSS and SLR data. We performed such a combined processing of GNSS and SLR using the data of the year 2008. During this period, two GPS and four GLONASS satellites could be used as satellite co-locations. We focus on the general procedure for this type of combined processing and the impact on the terrestrial reference frame (including scale and geocenter), the GNSS satellite antenna offsets (SAO) and the SLR range biases. We show that the combination using only satellite co-locations as connection between GNSS and SLR is possible and allows the estimation of SLR station coordinates at the level of 1–2 cm. The SLR observations to GNSS satellites provide the scale allowing the estimation of GNSS SAO without relying on the scale of any a priori terrestrial reference frame. We show that the necessity to estimate SLR range biases does not prohibit the estimation of GNSS SAO. A good distribution of SLR observations allows a common estimation of the two parameter types. The estimated corrections for the GNSS SAO are 119 mm and −13 mm on average for the GPS and GLONASS satellites, respectively. The resulting SLR range biases suggest that it might be sufficient to estimate one parameter per station representing a range bias common to all GNSS satellites. The estimated biases are in the range of a few centimeters up to 5 cm. Scale differences of 0.9 ppb are seen between GNSS and SLR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call