Abstract

BackgroundDiabetes promotes maladaptive changes in the endothelium that lead to its dysfunction and contribute to the vascular pathology of diabetes. We have previously reported the up-regulation of galectin-3, a β-galactoside-binding lectin, in the endothelium and sera of diabetic mice, implicating this molecule in diabetic vasculopathy and suggesting its potential as a biomarker of the disease. Therefore, we sought to assess the role of galectin-3 in the vascular pathology of diabetes.MethodsGalectin-3 knockout mice (KO) and wild-type mice (WT) were fed either a high-fat diet (HFD) (60 % fat calories) to produce insulin resistant diabetes, or standard chow (12 % fat calories), and their metabolic and endothelial responses were measured. After 8 weeks, the aortic and skeletal muscle endothelia were isolated by fluorescence sorting of CD105+/CD45− cells and comprehensive transcriptional analyses were performed. Transcripts differentially dysregulated by HFD in KO endothelium compared to WT were confirmed by semi-quantitative RT-PCR, and protein expression was determined by immunofluorescence of aortic and muscle tissue. Ingenuity® Pathway Analysis was used to identify pathways up-regulated by HFD in the KO, such as the coagulation cascade, and measurements of blood clotting activity were performed to confirm these results.ResultsKO mice demonstrate greater hyperglycemia and impaired glucose tolerance but lower insulin levels on HFD compared to WT. KO mice demonstrate a more robust transcriptional response to HFD in the vascular endothelium compared to WT. Transcripts dysregulated in the KO endothelium after HFD are involved in glucose uptake and insulin signaling, vasoregulation, coagulation, and atherogenesis. One of the most down-regulated transcripts in the endothelium of the KO after HFD was the glucose transporter, Glut4/Slc2a4. GLUT4 immunofluorescence confirmed lower protein abundance in the endothelium and muscle of the HFD-fed KO. Prothrombin time was decreased in the diabetic KO indicating increased coagulation activity.ConclusionsGalectin-3 deficiency leads to exacerbated metabolic derangement and endothelial dysfunction. The impaired tissue uptake of glucose in KO mice can be attributed to the reduced expression of GLUT4. Enhanced coagulation activity in the diabetic KO suggests a protective role for galectin-3 against thrombosis. These studies demonstrate that galectin-3 deficiency contributes both to the pathogenesis of diabetes and the associated vasculopathy.Electronic supplementary materialThe online version of this article (doi:10.1186/s12933-015-0230-3) contains supplementary material, which is available to authorized users.

Highlights

  • Diabetes promotes maladaptive changes in the endothelium that lead to its dysfunction and contribute to the vascular pathology of diabetes

  • Metabolic characterization of the galectin-3 (−/−) type II diabetic mouse model As expected, both knockout mice (KO) and wild-type mice (WT) mice on high-fat diet (HFD) have significant weight gain compared to chow-fed controls, and this weight gain is similar between the strains (Fig. 1a)

  • During the first 2 weeks of highfat feeding, KO mice displayed a sharp increase in fasting glucose levels, which remained high for the duration of the study; whereas fasting glucose levels of WT mice on HFD increased at a steady rate, reaching statistical significance at 4 weeks, and leveled off (Fig. 1b)

Read more

Summary

Introduction

Diabetes promotes maladaptive changes in the endothelium that lead to its dysfunction and contribute to the vascular pathology of diabetes. We have developed methods for the rapid isolation of highly purified endothelial cells from mice exposed to models of diabetes [1, 2]. Transcriptional analysis of these diabetic endothelial cells revealed increased abundance of galectin-3 mRNA and protein in the aortic and muscle endothelium. We found a correlation between serum galectin-3 levels and insulin resistance, implicating this molecule as a potential biomarker of diabetic vasculopathy [1]. A recent clinical study has shown that galectin-3 levels correlate with plasma glucose, C-reactive protein, and degree of insulin resistance, suggesting its potential as a biomarker for predicting diabetes and prediabetes [4]. We sought to determine the role of galectin-3 in the vascular pathology and metabolic derangement observed in type II diabetes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.