Abstract

Introduction Bone marrow mesenchymal stem cell (BMMSC) transplantation is beneficial in treating Systemic lupus erythematosus (SLE); however, the underlying mechanism remains elusive. This study investigates the role of BMMSCs in regulating lymphocyte proliferation and cell cycle progression during SLE and delves into the contribution of BMMSC-produced galectin-1. Methods BMMSCs were co-cultured with T lymphocytes to assess their impact on suppressing CD4+ T cells in SLE patients. Proliferation and cell cycle distribution of CD4+ T cells were analyzed using flow cytometry. The expression of cell cycle-related proteins, including p21, p27, and cyclin-dependent kinase 2 (CDK2), was investigated through western blotting. Extracellular and intracellular galectin-1 levels were determined via ELISA and flow cytometry. The role of galectin-1 in CD4+ T cell proliferation and cell cycle was evaluated through RNAi-mediated galectin-1 expression disruption in BMMSCs. Results and discussion BMMSCs effectively inhibited CD4+ T cell proliferation and impeded their cell cycle progression in SLE patients, concurrently resulting in a reduction in CDK2 levels and an increase in p21 and p27 expression. Moreover, BMMSCs expressed a high level of galectin-1 in the co-culture system. Galectin-1 was found to be critical in maintaining the suppressive activity of BMMSCs and restoring the cell cycle of CD4+ T cells. Conclusion This study demonstrates that BMMSCs suppress the proliferation and influence the cell cycle of CD4+ T cells in SLE patients, an effect mediated by the upregulation of galectin-1 in BMMSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call