Abstract

Electrons accelerated on Earth by a rich variety of wave scattering or stochastic processes generate hard non-thermal X-ray bremsstrahlung up to >~ 1 MeV and power Earth's various types of aurorae. Although Jupiter's magnetic field is an order of magnitude larger than Earth's, space-based telescopes have previously detected X-rays only up to ~7 keV. On the basis of theoretical models of the Jovian auroral X-ray production, X-ray emission in the ~2-7 keV band has been interpreted as thermal (arising from electrons characterized by a Maxwell-Boltzmann distribution) bremsstrahlung. Here we report the observation of hard X-rays in the 8-20 keV band from the Jovian aurorae, obtained with the NuSTAR X-ray observatory. The X-rays fit to a flat power-law model with slope 0.60+/-0.22 - a spectral signature of non-thermal, hard X-ray bremsstrahlung. We determine the electron flux and spectral shape in the keV to MeV energy range using coeval in situ measurements by the Juno spacecraft's JADE and JEDI instruments. Jovian electron spectra of the form we observe have previously been interpreted to arise in stochastic acceleration, rather than coherent acceleration by electric fields. We reproduce the X-ray spectral shape and approximate flux observed by NuSTAR, and explain the non-detection of hard X-rays by Ulysses, by simulating the non-thermal population of electrons undergoing precipitating electron energy loss, secondary electron generation and bremsstrahlung emission in a model Jovian atmosphere. The results highlight the similarities between the processes generating hard X-ray auroras on Earth and Jupiter, which may be occurring on Saturn, too.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.