Abstract

Autophagy is critically involved in myocardial ischemia-reperfusion (I/R). Autophagy inhibition exacerbates myocardial I/R injury. Few effective agents target autophagy to prevent myocardial I/R injury. Effective drugs that promote autophagy in myocardial I/R warrant further investigation. Galangin (Gal) enhances autophagy and alleviates I/R injury. Here we conducted both in vivo and in vitro experiments to observe the changes in autophagy after galangin treatment and investigated the cardioprotective effects of galangin on myocardial I/R. MethodsAfter 45-min occlusion of the left anterior descending coronary artery, myocardial I/R was induced by slipknot release. One day before surgery and immediately after surgery, the mice were injected intraperitoneally with the same volume of saline or Gal. The effects of Gal were evaluated using echocardiography, 2,3,5-triphenyltetrazolium chloride staining (TTC staining), western blotting, and transmission electron microscopy. Primary cardiomyocytes and bone marrow–derived macrophages were extracted in vitro to measure the cardioprotective effects of Gal. ResultsCompared with the saline-treated group, Gal significantly improved cardiac function and limited infarct enlargement after myocardial I/R. In vivo and in vitro studies demonstrated that Gal treatment promoted autophagy during myocardial I/R. The anti-inflammatory effects of Gal were validated in bone marrow–derived macrophages. These results strongly suggest that Gal treatment can attenuate myocardial I/R injury. ConclusionOur data demonstrated that Gal could improve left ventricular ejection fraction and reduce infarct size after myocardial I/R by promoting autophagy and inhibiting inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call