Abstract

AimsApigenin-7-O-β-d-(-6″-p-coumaroyl)-glucopyranoside (APG) was considered as the major active compound derived from Clematis tangutica. Though we have demonstrated that APG exerts cardioprotective effects, the mechanism of APG-mediated cardioprotection remains largely unknown. Numerous studies indicate that endoplasmic reticulum stress (ERS) is a vital injury factor in myocardial ischemia reperfusion (MI/R). In this study, we mainly investigated whether modulation of the ERS and AMPK were involved in the cardioprotective action of APG during MI/R injury. Main methodsThe perfused isolated rat heart or primary neonatal rat cardiomyocytes which exposed to APG with or else without the AMPK inhibitor Compound C was then subject to MI/R. After reperfusion, the degree of myocardial injury was assessed by using lactate dehydrogenase (LDH) release, creatine kinase (CK) release, histological examination, and TTC staining. The protein expressions of p-AMPK, AMPK, p-PERK, PERK, p-eIF2α, eIF2α, CHOP, Bax, Bcl2 and Cleaved Caspase 3 were analyzed by western blot. The cell viability was assessed by CCK-8 kit while apoptosis assessed by using TUNEL assay. Key findingsPretreatment of APG significantly improved cardiac function and suppressed ERS through activating the AMPK signaling pathway, which could simultaneously improve cardiac function, alleviate myocardial injury, increase the cell viability and decrease apoptosis. SignificanceTo conclude, APG ameliorates MI/R injury by activating the AMPK signaling pathway and relieving endoplasmic reticulum stress. APG may be a natural product with pharmacological preconditioning activity, which could do us a favor to develop more novel therapy methods to against MI/R injury in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.