Abstract

Escherichia coli is a major contributor to the industrial production of organic acids, but its production capacity and cost are limited by its acid sensitivity. Enhancing acid resistance in E. coli is essential for improving cell performance and production value. Here, we propose a feasible strategy for improving cellular acid tolerance by reducing ATP supply restriction. Transcriptome assays of acid-tolerant evolved strains revealed that the galactitol phosphotransferase system transporter protein GatA is an acid-tolerance factor that assists E. coli in improving its resistance to a variety of organic acids. Enhanced GatA expression increased cell survival under conditions of lethal stress due to D-lactic acid, itaconic acid and succinic acid by 101.8-fold, 29.4-fold and 41.6-fold, respectively. In addition, fermentation patterns for aerobic growth and oxygen-limited production of D-lactic acid were identified, and suitable transition and induction stages were evaluated. GatA effectively compensated for the lack of cellular energy during oxygen limitation and enabled the D-lactic acid producing strain to exhibit more sustainable productivity in acidic fermentation environments with a 55.7% increase in D-lactic acid titer from 9.5 g·L−1 to 14.8 g·L−1 and reduced generation of by-product. Thus, this study developed a method to improve the acid resistance of E. coli cells by compensating for the energy gap without affecting normal cell metabolism while reducing the cost of organic acid production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call