Abstract

The measurement delay of the feedback control system is a universal problem in industrial engineering, which will degrade output performance, especially causing undesirable chatter responses. In this study, a deep-Gaussian-process (DGP)-based method for operator's gait prediction is proposed to estimate the real-time motion intention and to compensate for the measurement delay of the inertial measurement unit (IMU). On the basis of these gait prediction uncertainties quantified by the DGP method, a variable admittance controller is designed to reduce real-time human-exoskeleton interaction torque. The reference trajectory is generated by the admittance controller, which is smoothed by the two-order Bessel interpolation. Meanwhile, the admittance parameters are self-regulated based on the defined uncertainty index of gait prediction. The extend-state observer (ESO) with backstepping iteration is adopted to compensate unmeasured system state, model uncertainties, and unmodeled dynamics of lower limb exoskeleton. The effectiveness of the proposed gait prediction and control scheme is verified by both the comparative simulations and experimental results of the human-exoskeleton cooperative motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call