Abstract
The diabetic foot is one of the most serious complications of diabetes mellitus and it can lead to foot ulcerations and amputations. Finite element analysis quantifies the loads developed in the different anatomical structures and describes how these affect foot tissue during foot–floor interaction. This approach for the diabetic subjects’ foot could provide valuable information in the process of plantar orthosis fabrication and fit. The purpose of this study was to develop two finite element models of the hindfoot, of healthy and diabetic neuropathic subjects. These models accounts for in vivo kinematics, kinetics, plantar pressure (PP) data and magnetic resonance images. These were acquired during gait analysis on 10 diabetic neuropathics and 10 healthy subjects. Validity of the models has been assessed through comparison between the peak PPs of simulated and experimental data: root mean square error (RMSE) in percentage of the experimental peak value was evaluated. Two different finite elements analysis were performed: subject-specific simulations in terms of both geometry and gait analysis, and by adopting the complete gait analysis dataset as boundary conditions. Model predicted plantar pressures were in good agreement with those experimentally measured. Best agreement was obtained in the subject-specific case (RMSE of 13%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.