Abstract

Abstract We identify Gaia 0007–1605 A,C as the first inner brown dwarf–white dwarf binary of a hierarchical triple system in which the outer component is another white dwarf (Gaia 0007–1605 B). From optical/near-infrared spectroscopy obtained at the Very Large Telescope with the X-Shooter instrument and/or from Gaia photometry plus spectral energy distribution fitting, we determine the effective temperatures and masses of the two white dwarfs (12,018 ± 68 K and 0.54 ± 0.01 M ⊙ for Gaia 0007–1605 A and 4445 ± 116 K and 0.56 ± 0.05 M ⊙ for Gaia 0007–1605 B) and the effective temperature of the brown dwarf (1850 ± 50 K; corresponding to spectral type L3 ± 1). By analyzing the available TESS light curves of Gaia 0007–1605 A,C we detect a signal at 1.0446 ± 0.0015 days with an amplitude of 6.25 ppt, which we interpret as the orbital period modulated from irradiation effects of the white dwarf on the brown dwarf’s surface. This drives us to speculate that the inner binary evolved through a common-envelope phase in the past. Using the outer white dwarf as a cosmochronometer and analyzing the kinematic properties of the system, we conclude that the triple system is about 10 Gyr old.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call