Abstract
To reduce the dimensionality of the Gabor feature, this paper explores texture information from Gabor coefficients and presents two kinds of new Gabor texture representations for face recognition: Gabor real part-based texture representation (GRTR) and Gabor imaginary part-based texture representation (GITR). Specifically, GRTR and GITR are obtained using the generalized Gaussian distribution (GGD) to model the real and imaginary parts of Gabor coefficients, respectively. The estimated model parameters serve as texture representation. Experiments performed on Yale and FERET databases show that the proposed texture representations GRTR and GITR significantly outperform the widely used Gabor magnitude in terms of recognition accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.