Abstract

Active appearance model (AAM) has been successfully applied to register many types of deformable objects in images. However, the high dimension of intensity used in AAM usually leads to an expensive storage and computational cost. Moreover, intensity values cannot provide enough information for image alignment. In this paper, we propose a new AAM method based on Gabor texture feature representation. Our contributions are two-fold. On one hand, based on the assumption that Gabor magnitude and Gabor phase follow a lognormal distribution and a general Gaussian distribution respectively, three simplified texture representations are proposed. One the other hand, we apply the proposed texture representations in AAM, which is the first time to extract statistical features from both Gabor magnitude and Gabor phase as the texture representation in AAM. Tests on public and our databases show that the proposed Gabor representations lead to more accurate and robust matching between model and images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.