Abstract

GABA is an inhibitory transmitter but can sometimes produce paradoxical excitatory effects through synaptic networks. We found a novel GABA-mediated excitation within a single retinal cell. It involves a chain of events from receptor stimulation to the sequential modulation of two associated channels, resulting in enhanced neuroexcitability. GABAB receptor activation selectively suppresses N-type calcium channels. The BK-type potassium channels are exclusively linked to the N-type calcium channel. Thus, stimulation of GABAB receptors suppresses an outward current, increasing the excitatory range of single neurons. GABAB receptors (GABAB Rs) suppress voltage-gated calcium channels and activate G-protein coupled potassium channels (GIRK and TREK channels), both mechanisms serving to inhibit neurons. In isolated rat retinal spiking neurons, GABAB Rs produce both actions but the net effect is to enhance excitatory signals. This is because GABAB Rs selectively suppress N-type calcium channels, which in turn are specifically linked to BK channels. Consequently, when GABAB Rs are stimulated there is a reduction in outward current, allowing neurons to extend their level of depolarization. Whereas many retinal neurons use L-type channels to stimulate vesicle fusion, the suppression of N-type channels augments dynamic range without affecting transmitter release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.