Abstract

Recent work has demonstrated that changes in ventral tegmental area (VTA) GABA(A) receptor ion conductance properties are responsible for switching morphine's positive reinforcing properties from a dopamine-independent to a dopamine-dependent pathway when an animal transitions from a non-deprived (minimal drug exposure) to a dependent (chronic drug exposure) and withdrawn state. Here we show that a double dissociation of ethanol's positive reinforcing properties is exactly opposite to that seen with morphine. In C57BL/6 mice, ethanol-conditioned place preferences were blocked in dopamine D2 receptor knockout non-deprived mice, but not by a lesion of the tegmental pedunculopontine nucleus (TPP). On the other hand, TPP lesions, but not a D2 receptor mutation, blocked ethanol-conditioned place preferences in ethanol-dependent and withdrawn mice. The opposite effects of ethanol and opiates can be explained by their proposed actions through a common VTA GABA(A) receptor switching mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call